jueves, 7 de octubre de 2021

Buscando “pi” en los objetos circulares (Matemáticas, 4º de ESO)

Este principio de curso, en la clase de Matemáticas de 4º de ESO, tocaba estudiar los números irracionales.  Se podría haber hecho desde una perspectiva teórica.  Pero hemos empezado el estudio del número “pi” buscándolo en los objetos más cotidianos.

En clase nos encontramos una serie de objetos con formas circulares o esféricas.  El profesor nos propuso que midiéramos la longitud de la circunferencia, y dividiéramos por el diámetro.

A veces no fue fácil, y tuvimos que buscar estrategias de medida más o menos originales.  Podíamos aprovechar, por ejemplo, que la rueda gira, y trasladar su longitud a una línea recta sobre el suelo.  Para medir el diámetro del melón no podíamos agujerearlo (era el postre del profe…).










Al final, pusimos todos los resultados en forma de tabla.  Descubrimos una curiosa regularidad: al dividir, todos los valores estaban un poco por encima de 3.

Éste era el valor aproximado de “pi”.  De hecho, así se define este fascinante número: la razón entre la longitud de la circunferencia y su diámetro.


Más adelante, ya aprendimos que “pi” es un número irracional y trascendente (no es ninguna fracción, ni ninguna raíz).  También que se puede encontrar su valor por métodos geométricos como el de Arquímedes, calculando sumas infinitas con supercomputadores (series), o incluso mediante métodos probabilísticos.  Además, nos sorprendieron todas las curiosidades que acompañan a “pi” en los ambientes matemáticos, como los concursos de memorización.

Pero lo más sorprendente es que, detrás de cada objeto circular de la realidad, se esconda siempre 3’14159265…



En junio de 2018, celebramos el 1r día de las Matemáticas en el Colegio, haciendo un mosaico colaborativo con los decimales de “pi”.  Este curso esperamos poder volver a celebrarlo.

No hay comentarios:

Publicar un comentario